1

'V

{

|
i

)

m ! T |
1! woo

!

-

o

!

N93-12385

Design of a Lattice-Based Faceted Classification System

David Eichmann

John Atkins

Dept. of Statistics and Computer Science
West Virginia University
Morgantown, WV 26506

Abstract We describe a software reuse architecture
supportung component retrieval by facet classes. The
faccts arc organizcd into a lattice of facet value scts and
facet n-tuples. The query mechanism supports both pre-
cise retrieval and flexible browsing.

L Introduction

There are many obstacles in the path to development
of a practical and useful software reuse environment.
Retrieval of “suitable” reuse candidates from a collection
of possibly thousands of components is a particularly
significant obstacle. We describe the design of a compo-
nent classification scheme and its associated query
mechanism. The classification scheme is based upon a
lattice of facet values and facet tuples. The query mecha-
nism uses type inference rules o locate and retrieve those
components whose classifications in the lattice are sub-
types of the query specification.

11

fiw S

Reuse has long been an accepted principle in many
scienufic disciplines. Engineers make design decisions
on the availability of components that facilitate product
development, biologists use established laboratory instru-
ments and chemists use standardized measuring devices
to record experimental results. It would be unthinkable
for an engineer to “design and develop” the transistor
every time that a transistor is required in an electrical
instrument. Computer scientists, however, are guilty of a
comparable practice in their discipline: software reuse is
not widely practiced in the computer science field. Gen-
erally, the reasons are:

1. Development standards have not been established
for software;

This work was supported in part by a grant from
MountainNet Inc. as part of the AdaNet project under
NASA cooperalive agreement NCC9-16.

2. There is a pervasive belief that if it is “not developed
here™, it can’t be used by “us™;

3. Sofltwarc is all too often developed with respect 1o a
specific requirement with no consideration given to
reuse in other environments;

4. Many languages encourage constructs that are not
conducive to reuse;

S. Software Engineering principles are not widely prac-
ticed and consequently, requirements and design
documents often are not available with the code; and

6. No widely accepted methodology has been devel-
opcd to facilitate the identification and access of
rcusable components.

Regardless of the reasons for not developing soft-
ware for eventual reuse, the spiraling cost of new soft-
ware development is mandating an increased interest in
software reusc. It has been estimated that in 1990 alone,
the output of source code will be 15.3 billion lines of
code [11]). With the minimal effort to reuse existing soft-
ware, it is natural to ask what percentage of this enor-
mous number of lincs of code will represent duplication
of effort. It has been estimated that only 30 10 40% of
this code will represent novel applications while 60 to
70% of the code will apply to generic computer tasks
such as data entry, storage, sorting, searching, etc.

Although there are no definitive answers as yet to
the software reuse problem, there is substantial ongoing
research on the problem. One area of research is to iden-
tify characteristics of sofiware components that enhance
the reuse potential of the component in terms of its bind-
ings to other modules [3]. Another area of research is to
identify techniques that can be used to translate a soft-
ware component that has marginal reuse potential to one
that can be casily incorporated into a larger system. A
third rescarch aréa rclative (o software reuse that has
been extensively studied is that of identifying metrics
that measure software complexity. An example of this is

Second International Conference on Software
90 Engineering and Knowledge Engineering, Skokie, IL,
June 21-23, 1990, pages 90-97.

PRECEDING PAGE BLANK NOT FIL_RMLD

McCabe’s Complexity melric. A very recent area of re-
search in software reuse is that of the problem of classi-
fying software in order to identify and access the soft-
ware [4], [12]. The most promising classification method
for software reuse is the Faceted Classification System.
This methodology has been studied extensively by
Prieto-Diaz and forms the basis for the methodology
presented in this paper.

2.F ifi

The faceted classification methodology, as studied
by Prieto-Diaz, begins by using Domain Analysis “10
derive faceted classification schemes of domain specific
objects” [13]. This process relies on a library notion
known as Literary Warrant. Literary Warrant collects a
representative sample of tides which are to be classified
and extracts descriptive terms to serve as a grouping
mechanism for the titles. From this process, the classifier
not only derives terms for grouping but also identifies a
vocabulary that serves as values within the groups.

From the software perspective, the groupings or fac-
ets become a taxonomy for the software. Using Literary
Warrant, Pricto-Diaz has identified six facets that can be
used as a taxonomy [14]. These facets are: Function, Ob-

ject, Mcdium, System Type, Functional Area and Setting.

Every software component is classified by assigning a
value for each facet for that component. For example, a
software component in a Relational Database Manage-
ment System that parses expressions might be classified
with the tuple
(parse, expression, stack, interpreter, DEMS,).
Thus, the Function facet value for this component is
“parse”, the Object facet value is “expression”, etc. Note
that no value has becn assigned for the Setting facet as
"this software component does not seem to have an appro-
priate value for the Setting facet.
The software reuser locates software components in
a faceted reuse system by specifying facet values that are
descriptive of the software desired. For example, if we
are using Prieto-Diaz’s facets, suppose that we wish to
find a software component to format text. We might
query the system by constructing the tuple
(format, text, file, file handler, word processor, *).
Note that the asterisk for the value for the Setting facet
acts as a wild card in the query which indicates that there
is no constraint on that facet. If the query results in one
or more “hits”, then the reuser chooses from the hits the
particular software component {hat best fits the desired
need. The problem arises if no hits arc obtained or if the

91

software that is identificd is not appropriate 10 the needs
of the reuser. One solution is to weaken the query by
relaxing one or more constraints by replacing a facet
value with a wild card. For.example, if the Functional
Area facet has the least significance 10 the required nesd,
the reuser could again pose the query with the tuple
(format, text, file, file handler, *, *).
This process of weakening the query continues until a
suitable component is retrieved.

An altemative method to continue the search after
initial query is known as the method of “conceptual
closeness.” In this method, pairs of facet values for the
same facet have numeric values associated with them
that in a sense measurcs their “degree of samenass.” Fer
example, the two facet values “delete” and “remove”
would be very closc in meaning and hence would have 2
metric value close to 0 indicating their semantic close-
ncss. However, the two values “add” and “format” for
Function have litde in common and hence would have a
closeness value nearer to 1. In this method, the system
assumes the responsibility for continued searches by
modifying the query by replacing facet values with val-
ues that are “close” in meaning as determined by the .
closeness metric. For example, if the facet value “editor
is closer to “word processor” in terms of the metric than
any other valuc in any facct, then the system poses the
query with the modified tuple

{format, text, file, file handler, editor, *)
and continucs in this manner until a hit is obtained.

Although this appears to be a reasonable solution to
the problem of continued searches, the difficulty lies in
the need to ass'ignr mcaningful closcness values 1o pairs C
facet valucs. With a large collection of values, thisis a
daunting wask. However, one solution is suggested by
adapting the work of Kruskal 8] to the conceptual close_
ness problem. In this method, a metric is assigned o
pairs of values based on user acceptance of modified
queries. The method requires the use of a two dimen-
sional matrix for each facet indexed by the facet values
themselves. For example, if an original query tuple con- =
sisting of :

(format, text, file, file handler, word processor, *
failed to achieve a hit and the user later accepted a com-

&

v
b

i

UM

i

LY

| M l| ‘

6l

i

|

Ml

ponent with the query tuple -
(format, text, file, file handler, editor, *),
the matrix corresponding to the Functional Area facet
would have onc added 10 the two matrix cells corre-
sponding to the entrics for “word processor” and “edi- . .
-

i

' 1w

r

tor”. Now if N is half of the total of the cell values in the
matrix, then the distance between “word processor” and
“editor” is defined to be 1 — (cell value)/N where the cell
value is the value in either of the entries corresponding to
the pair “word processor” and “editor”. It is clear that
this method requires a large and patient user group in
order to establish viable metric values.

1.3, Lattices

The faceted classification mode! that we shall de-
scribe in the next section is based on the mathematical
notion of a lattice. The definition of a lattice requires the
concept of a partial ordering on a set. Thus, a partial or-
dering < on a set A is a relation defined on A that satis-
fies three conditions, namely:

a. Reflexive: forall xin A, x < x;

b. Antsymmetric: forall x,yin A,ifx<yandy <x,
thenx =y,

c. Transitve: forallx,yandzin A,ifx<yandy<z,
thenx <2,

For example, the arithmetic comparison “less than or
equal” is a partial ordering on the Natural numbers. An-
other example is the subset relation defined on the power
setof a set. It should be noted that a partial ordering on a
set does not guarantee that any two objects in the set can
be compared using the partial ordering. For example, two
arbitrary elements in the power set are not comparable in
the sense that one need be a subset of the other.

A lattice is a set A on which is defined two binary
operations, A (meet) and v (join), which salisfy the fol-
lowing:

a. Idempotent: foranyin A, xAx=xand xvx=x;

b. Commutalve: forany xandyin A, XAy=YyAX
andxvy=yvx

c. Associative: forany x,yandzin A, xA(yAaz)=(x

Ay)azandxv(yv 2)=(xvy)vz
d. Absorption Law: foranyxandyin A, if x <y, then

xvy=yandxAy=x.

Additionally, if forany x,yand zin A, x A(yv2) =
xAay)vEaandxv(yaz)=(xvy)a(xvaz),we
say that the lattice is distributive. For example, the power
set with intersection as the meet and union as the join
forms a distributive lattice using the subset partial order.

Let < be a partial ordering on a set A. If X is a subsct
of A, we say that an element a in A is a lower bound of X
if a < x for every x in X. A Greatest Lower Bound (GLB)
of X is a lower bound b of X with the property thatif ais
any other lower bound of X, then a <b. Itis clcar thatif a
GLB exists for a subset X of A, then it must be unique.

92

For example, any subsct of elements in the power set has
a GLB consisting of the intersection of all elements in
the subset. In a lattice, any two elements have a GLB
which is just the mect of the two elements, ie. if x and y
are inalattice A, thenxay<xandxAay<yandifzis
any lower bound of both x and y, then Z <x Ay,

There is a dual to lower bounds which is the notion
of upper bounds. An clement a is an upper bound for a
set X if x < a for all x in X. A Least Upper Bound (LUB)
of a set X is an upper bound b such that if a is any other
upper bound, then b < a. For the example of the power
set, a LUB for a set X is the union of all the elements in
the subset. In a lattice, any two elements also have a least
upper bound which is just the join of the two elements.
Thus, forany twoclements xandyin A, x<xvyandy
< x vyand if z is any upper bound of both x and y, then
xXvy<z.

We note that if A is a set with a partial ordering <
such that any two elements have a GLB and a LUB, then
the set is a lattice where the mest of any two elements is
the GLB of the clements and the join of any two ele-
ments is just the LUB of the clements.

4 n il

The popularity of the Smalltalk programming lan-
guage (9], with its object orientation and built-in type
inheritance, has resulted in a flurry of research in object-
orientcd database sysiems. An object-oriented database
systcm is onc that is organized around objects and which
communicates through message—passing. Operations
(termed mcthods) arc associated with each objactina
databasc; somce of these operations are bound to specific
types of messages for that objecl. Most message—passing
systems are not strongly typcd, but rather perform run-
time type checking. This is done primarily to support
rapid prototyping of applications. Deferring the binding
of an object or message to a type until run—time reduces
the amount of effort needed to begin exercising an appli-
cation, but it also requires a run-time system that can
handle the errors that may arise.

The object classes in an object—oriented database are
organized into a partial ordering. Object classes inherit
attributes and mcthods from their ancestors in the order-
ing. Single inheritance schemes restrict a given object
class to at most one immediate ancestor in the partial
ordering. Multiple inheritance schemes allow a given
object class to have any number of immediate ancestors
in'the parual ordering. Cardelli [5) formalizes some of
the semantics of multiple inheritance,

Object~oricnied database systems have a number of
design goals, some concerning typing, but others con-
cerning peripheral issues (such as rapid prototyping).
The type semantics of object-oriented systems (including
inheritance and subtyping) is present in other systems
which are not based upon message~passing (e.g., Mor-
pheus [7], Galileo [2]). Such systems are strongly typed,
and hence, as Cardelli and Wegner [6] argue, can pro-
duce more efficient and reliable applications.

Hormn [10] introduces the notion of conformance,
allowing one type instance to be treated as if it were an
instance of another type. In a limited sense, this is what
happens with inheritance, but conformance is more gen-
eral. Inheritance requires that this treatment only be al-
lowed when moving up the type hierarchy or lattice.
Inheritance uscs a parual ordering of types (by subtype),
Plus an implicit definition of existence dependencies be-

- tween a given type and its ancestors. Conformance can
hold for arbitrary types, independent of any type ordering

2. The Reuse Type Lattice”
Figure 1 shows the general structure of the reuse
type lattice. Atthetopis | , the special universal type. _

- Any value conforms 10 the universal type. Atthe bottc_j

is L, the void type. These two special types ensure that
any two types in the lattice have a least upper bound an’:
a greatest lower bound, respectively. Between the uni-_
versal and void types appear the upper and lower bounds
for the two type constructors facet and tuple. Facely ==
characterizes the notion of the empty facet type; it con—
tains no values, but is still a facet. Likewise, Facet char-
acterizes the notion of the set of all possible facet value™
The dotted line between them indicates that an arbitrary=
number of types may appear here in the lattice. Fore
ample, figure 2 shows the sublattice for facet sets for
examples in scction 1.2,
The tuple sublattice has a similar structure. At the

top is the empty tuple type (), characterizing a tuple w™"

-

>

O

-
scheme. Such a notion is clearly superior to hierarchies T
or lattices for type-related query languages, where inter- =
mediate results (derived from existing types, but not part w
of the database schema) need to be manipulated. Fac'eto {'}
Inherilance~based systems are, in some sense, navi- ; : —
gational. A user querying an objsct—oriented database ! ' -
must be aware of the inheritance structure of that specific ! !
. . Facet tuple =
database, just as a uscr querying a network database must i
be aware of database structure. Because of their non— ha
navigational characteristics conformance-based models 1 _
promise o gain prominence over inheritance~based mod-)) -
els, just as relational models have over network models. Figure 1. The reuse type lattice
=
Facety B
=
Functiony Objecty Mediumy SystemTypeo Functional Areay Settingy =
1 ¥]] 1 i
1 ' 1 ' ' t -
' 1 1]] ! 1
']]] L] | o
: ' ; : : ; -
I : ' Z : ' -
[}] ¥) ¥ 1
Funcion Object = Medium SystemType FunctionalArea Setting =
-
Facet =
Figure 2. The Sublattice of Facet Sets o
i

93

G |

{1

NI

i

L a
!

no facets. At the bottom is tuple, the tuple l;'pe with all
possible facets.

2.1, Facets vs, Facet Value Seis

Traditional retrieval of individual facet values relies
upon maximal conjunction of boolean terms for retrieval
of matches on all facets and maximal disjunction of
boolean terms for matches on any facet of an expression.
In order to fit the notion of facet into the type lattice, we
look at sets of facets. A set of facets corresponds 10 a
conjunction on all of the facets comprising the set. Each
set occupies a unique position in the type lattice. We
handle disjunction by allowing a given component to
occupy multiple lattice positions. Matching occurs on
any of the positions, providing the same semantics as
disjunction.

Facet values are equivalent to enumeration values.
We attach no particular connotation within the type sys-
tem to a particular facet value. Values are bound to some
semantic concept in the problem domain.

The subset relation is our partial order. The least
value of this portion of the lattice is the set of all facet
values from all facets in the problem domain, denoted by
the distinguished name Facet. The greatest value of this
portion of the lattice is the empty set, denoted by the dis-
tinguished name Faceto. The union operator generates
the greatest lower bound. The intersection operator gen-
erates the least upper bound.

3._Type Inference Ryles

* We begin with a brief remark conceming notation.
In the inference rules that follow, the symbol A repre-
sents an existng set of assumptions. A always contains
the type information generated by the database schema
which implements the repository. It is occasionally nec-
essary to extend the set of assumptions with some addi-
tional information. A.x denotes the set of assumptions
extended with the factx. A" x states that given a set of
assumptions A, x can be inferred. Inferences above the
horizontal line act as premises for the conclusions, the
inferences below the horizontal Line. An expression is
well-typed if a type for the expression can be deduced
using the available inference rules, otherwise it is ill-
typed.

1. Domain Interval Subtypin

We adapt the notion of a domain interval (7] to for-
malize our notion of facet value sets. In[7] a subtype
was smaller than its supertype; here the reversc is true, a
subtype is a Jarger collection of values than its supertype.

94

~ Adomain interval is a type qualification that explic-
ity denotes the valid subrange(s) for a base type. As-
sume that t is a base type ordered by < (the ordering may
be arbitrary). A domain that is (inclusively) delimited by
two values, a and b, is denoted t,.... A non-inclusive
lower bound is denoted a* and a non-inclusive upper
bound is denoted by b-. Intervals made up of more than a
single continuous value range are denoted by a set of
ranges, for example, U,..s,c...q o denotes the interval that
includes the subinterval a through b inclusive, the subin-
terval ¢ through d inclusive, and the singleton value e,
The singleton range e is equivalent o ¢...6. When we
use such notation we intend thata < b and ¢ < d, but not
necessarily thatb < cord Se. Anempty pair of brack-
ets, ly, denotes an empty interval, i.e., one which con-
tains no clements. In our particular application, the base
types are finite sets of enumeration (facet) values.
Prcmises concerning membership of interval bound-
ary valucs (c.g., m and n in (1.1) and (1.2)) are assumed
to be part of the assumptions, and will not be explicitly
mentioned after this. Rule (1.1) provides for subtyping a
AFmet
AFrnet
AFm<n
Akt tm...n)

(1.1)

subrange of some type t; (1.2) does the same for two sub-
Atmet
Atm'et
Altnet
Abtn et
AFm’'€m<n<n’
At Hm'...nD b YUm...n)

ranges of some type t. Rule (1.3) extends subtyping to
A }- l(m;...n;) $ t(m{...m')

(1.2)

1.3)

Abtm.. o, .om 03 Ymyay, . m)

AFtm . .n)3 Um0

_domain intervals, where each subinterval in the subtype

is a subtype of somc interval in the supertype.
The following rules are used to combine ranges in
domain intervals. In rule (1.4), two ranges in an interval
Fx: H....a. b b...c,...)

AbXxIte ae.)

(1.4)

that share a tommon endpoint can be combined into a
single range. This 4can also be donc when onc end point
is inclusivc and the other is exclusive (rules (1.5) and

(1.6)). Overlapping ranges are merged into a single

AFX:ite a.bb.c..
(.oa.bb..c,..) (1.5)
Abx eaa.l)
Abx:t . '
{....a..bb’ e (1.6)
Al" X t(«8...G .)

range that uses the minimum of the two lower bounds as

the new lower bound and the maximum of the two upper

bounds as the new upper bound in rules (1.7) and (1.8).
AFX:t(. ,a.cb.d..)
Altac<b<c<d

1.7
AFXIt(. a.4,..)
AFXI a.db.c, ..
AFta. g itep.o (1.8)

AFXIt(a4)

The next two inference rules deal with unary domain
values. And the last two deal with complete intervals.

AbFx: Ta..)

Abx: Y. a..a..) 4

AbX:it a.a)
AbXxite. . a..) (19

AbFx:t
AFX:tw., o (L1D
by
A XA[(}-;(—e:w.) (1.12)

In order 1o establish the type of the result of an op-
eration such as union, some notion of domain interval
union is needed. If M and N arc two intervals over the
same type, then M U N is constructed by merging the
two sets of ranges making up the intervals, and using the
domain inference rules described above to reduce the
result.

AbX:iymuny

AFXx: t(MN)

(1.13)

In a similar fashlon for two intervals M and N over
the same type, their intersection, M ~ N, can be con-
structed by selecting only those ranges which are com-
mon to both domain intervals. The domain inference
rules are used to decompose the given ranges into sets of
disjoint ranges and common ranges. The set of common
ranges makes up the intersection interval.

AkFmy< Na
A Ftm,...m)A (aa..n) M = LMY
Atm,<n,<mp<n

AF U mo) A (reeeme) M) = L(ny o) My (1:15)

(1.14)

95

A _J

(1.16)

AFmaSnSnp<my
AF U m) o (em). M) T Kaenu)M)
3.2, Tuple Subtyping
This collection of inference rules exphcxdy types
tuples that classify components. We view atupler ot
of type record, {t, ..., t). The type t must be a facet
type. The emply tuple (i.e., the tuple comammg no fac

ets) is of type ()}, the wple type with no components.

The order in which types appear is not arbitrary, since
position is used to distinguish facets.

Inference rules (2.1) and (2.2) allow for the dcﬁm—
tion of a tuple and the extraction of an attribute from a
tuple. Ife, through e, are type expressions of type s

1
|1

g5 U

b’

N\

I

Al €i1=4 ¥
Ate,=1, @
A(r= ey, ...,ep)) Fr:{ty,..., 1) X

through t, respectively, then the tuple constructed from
them will be of the type resulting from the record con-
structor ‘() applied to those types. We use type expres-
sions 1o allow construction of attribute types without
requiring the carlicr definition of all the types needed. v
Note that the same syntax is used 1o denote both the defi-
nition of the tuple and its rype. If autribute i in tuple ris -
of type t then the result type for the component extracis,
riist

A"'r:{tl...tn}
AFl<i<n
AFri:t

New luple types are constructed from exxsung tuplc
types using the tuple constructor ‘&’ which accepts two
tuple types and returns a tuple Lype containing all compr‘ .
nents of both argument types.

i ﬁhunuuu

AFTy:(ty ..., tm} -
A"Tz (tmo-l:---vtn] -
Atl<m<n Q37
A}'TI&T2=(I1,...,10} =

Rules (2.1) and (2.2) give the type semantics for
construction of tuples from attributes and for extraction —
of an attributc from a wple. Rule (2.4) characterizes thee
notion of subtype between two tuples: One tuple is a
subtype of-another if it has all of the atributes of the
other (attributes common to both tuple types must be of »

o

“the samc type in both twple types), and possibly some

additional auributcs. This may seem contrary to the in-

‘M ‘ M

1

{ VI

.

i

(A |

-
R

1

L4
4

{il

(v’ -

AlFt

AFtn
: (2.4)
Att,
AFl<m<n
AF{t, o tm ety S {ty, 0, t)
tuitive notion of subtype being a restriction of a type.
Consider, however, that an instance of a subtype must be
able to be used as an instance of its supertype, and thus
must contain all of the supertype’s attributes.
Rule (2.5) extends record subtyping 10 handle the
AFl<m<n
ArFthi <y

: (2.5)
AFtn<ty

AF{Uhe s Ume e tn) £ (thy e,)
situation where a component of the subtype is a subtype
of the corresponding component in the supertype. Infer-
ence rule (2.4) required that the corresponding attributes
be of the same type. Rule (2.5) generalizes (2.4) by deal-
ing with subtyping of the attributes in addition to the re-
spective record types.

4, Ovuerving the Renositorv

The repository is partitioned by structural similarity
(package, function, etc.). Each partition is associated
with a set of facets which characterize and classify the
members of the partition. The particular facets and the
number of facets associated with a partition varies as
needed to adequately characierize it. A given facet may
be unique 10 a partition, or it may be shared by many
partitions. The function facet from section 1.2. is a good
example of a facet likely o be shared by a majority of
partitions in the repository.

Each partition instance has one or more lattice verti-
ces that correspond to the sets of section 2.1. There is
always the primary lattice vertex corresponding to the
tuple of facet value sets characterizing this component as
a member of the partition. Additionally, there may be
zero or more secondary lattice vertices corresponding to
alternative characterizations of the component or charac-
terizations of subcomponents contained within this com-
ponent.

4.1, Repository Structure

Two persistent storage arcas comprise the actual
repository: a sct of text files, and a st of database rela-
tons. The text files contain the body of thc components

themselves, or descriptions of them (in the case of a
commercial product described in a local repository). The
database relations store the lattice vertices.

Each database rclation corresponds to the lattics ver-
tex characterizing a particular repository partition. The
type of the relation is then the type of the partition, which
is the least upper bound of all the tuple types of the com-
ponent vertices comprising the partition. Efficient algo-
rithms for lattice operations such as LUB are described
in [1]. i
There is also a relation made up of facet value/syno-
nym pairs. This relation is described in section 4.2, Ad-
ditional relations may also be present if there are altarna-
tive characterizations or subcomponents characteriza-
tions not cquivalent 1o some primary partition characteri-
zation.
42 erv Evalyation

A query is a boolean expression containing predi-
cates and the operators and, or, and not. A predicate is
simply a constant of type tuple. When a user issues a -
query, the query evaluator first treats all of the facet val-
ues in the query as synonyms and replaces them with
actual facet values from the value/synonym relation. For
example, “database,” “databases,” “data base,” and “data
bases™ might all be replaced with “database.” The evalu-
ator then locates all of the relations in the database whose
type conforms to some predicate of the query using the
inference rules of section 3. Specific ples which con-
form to some predicatc are then retrieved from the con-
forming relations (once more using the inference rules).
The result is then a st of component refercnces, which
can bc optionally retricved from the text slorage area.

wsi jev

Trealing a query as an editable entity in the user in-
terface provides a straightforward browsing tool. For
example, attaching facets to a query comprised of a sin-
gle wple makes the query less general. Fewer and fewer
partitions conform to the tuple type. Specifying exactly
those facets found in a given partition restricts retrieval
lo only that partition. Over—qualification results in
emply retrieval,

Removing facets from the query tuple makes the
query in tum more general. Specifying an empty tuple

. results in all partitions of the repository conforming Lo

the type of the query tple (all record types arc subtypes
of the empty record {)).

nclusion

The reuse architecture described here uses the

proven method of faceted classification as a starting
point for a retrieval mechanism providing both precise
characterization of components and flexible specification
of queries. Its simple user interface encapsulates a data
model founded in formal lattice and type theory.

Referen

[1] H. Ait-Kaci, R. Boyer, P. Lincoln, R. Nasr, “Effi-

(2)

(4]

(5]

cient Implementation of Lattice Operations,” ACM
Transactions on Programming Languages and Sys-
tems, vol. 11, no. 1, p. 115, 1989,

A. Albano, L. Cardcelli, and R. Orsini, “Galilco: A
Strongly-Typed, Interactive Conceptual Language,”
ACM Transactions on Database Systems, vol. 10,
no. 2, p. 230, 1985.

V.R. Basili, H. D. Rombach, J. Bailey, A. Delis, F.
Farhat, “Ada Reuse Metrics,” Workshop Proceed-
ings: Ada Reuse and Metrics, Atlanta, Ga., June
15-16, 1988.

G. Booch, Sofrware Components with Ada, ben-
jamin/cummings, Menlo Park, California, 1987.

L. Cardelli, “A Semantics of Multiple Inheritance,”
in Semantics of Data Types (Proceedings Interna-
tional Symposium Sophia-Antipolos, France, June
1984), Springer-Verlag, Lecture Notes in Computer
Scicnee, vol. 173, p. 51,

S7

(6] L. Cardells, P. Wegner, “On Understanding Types,
Data Abstracuon, and Polymorphism,” ACM Com-
puting Surveys, vol. 17, no. 4, p. 471, 1985.

D. Eichmann, Polymorphic Extensions to the Rela-
tional Model, Ph.D. dissertation, The University of

(7]

A

L4

Iowa, Iowa City, Ia., August 1989. Also available 2s

technical report 89-05.

R. Gagliano, G. S. Owen, M. D. Fraser, K. N. King
P. A. Honkanen, “Tools for Managing a Library of
Reusable Ada Components,” Workshop Proceed-
ings: Ada Reuse and Metrics, Atlanta, Ga., June
15-16, 1988.

A. Goldberg, D. Robson, Smalltalk-80: The Lan-
guage and Its Implementation, Addison-Wesley,
1983.

(8]

(9

=

W

L

{10]C. Hom, *“Conformance, Genericity, Inheritance -—3,,,

Enhancement,” ECOOP'87 - Proc. Europear. Cor.-

ference on Object—Oriented Programming, p. 223,

Paris, France, June 15-17, 1987.

[11] T. C. Jones, “Technical and Demographic Trends in™

the Computing Industry,” Proceedings of the 1983
DSSD Conference, Topeka, Kansas, October, 1983.

[12)R. Pricto-Diaz, “Domain Analysis for Reusability,”
Proceedings of COMPSAC 87, Tokyo, Japan, Octc-
ber, 1987,

{13]R. Pricto-Diaz, “Facted Classification and Reuse
Across Domains,” Unpublished Draft.

[14]R. Pricto-Diaz, P. Freeman, “Classifying Softwarz
for Reusability,” JEEE Software, vol. 4, no. 1, p. 6,
1987.

l

gu!

1]

iw g

L

i £ oy A

